
Bayesian updating of distributions in the

exponential family

1 The likelihood distribution

The probability density function (or probability mass function, in the case of a
discrete random variable) of an exponential family distribution is

p(x | η) = g(η)h(x) exp(η · T (x)) (1)

where x is the random variable, η are the natural parameters, g(η) is the
normalization factor, h(x) is the base measure, and T (x) is a sufficient statistic.
The sufficient statistic fully summarizes the data within the probability density
function. For data X = (x1, . . . , xn), the likelihood is

p(X | η) =

n∏
i=1

g(η)h(x) exp(η · T (x))

= g(η)n

(
n∏
i=1

h(x)

)
exp

(
η ·

n∑
i=1

T (xi)

) (2)

1.1 Example: Poisson distribution

The Poisson distribution is defined by one parameter λ, which represents the
expected value and variance of the distribution. It can be expressed in the form
of an exponential family distribution as follows:

η = lnλ (3)

h(x) =
1

x!
(4)

T (x) = x (5)

g(η) = exp(− exp η) = exp(−λ) (6)

Hence
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p(x | η) = g(η)h(x) exp(η · T (x))

= exp(−λ)
1

x!
exp(x lnλ)

=
λx

x!
exp(−λ)

(7)

yielding the familiar expression for the probability mass function.

1.2 Example: Normal distribution

The normal distribution is defined by two parameters µ and λ, which represent
the mean and variance of the distribution, respectively. It can be expressed in
the form of an exponential family distribution as follows:

η =

[
µ
σ2

− 1
2σ2

]
(8)

h(x) =
1√
2π

(9)

T (x) =

[
x
x2

]
(10)

g(η) = exp

(
η21
4η2

+
1

2
ln(−2η2)

)
= exp

(
− µ2

2σ2
− lnσ

)
(11)

=
√
−2η2 exp

(
η21
4η22

)
=

1

σ
exp

(
− µ2

2σ2

)
(12)

Hence

p(x | η) = g(η)h(x) exp(η · T (x))

=
1

σ
exp

(
− µ2

2σ2

)
1√
2π

exp

([
µ
σ2

− 1
2σ2

]
·
[
x
x2

])
=

1

σ
√

2π
exp

(
− µ2

2σ2
+
µx

σ2
− x2

2σ2

)
=

1

σ
√

2π
exp

(
−x

2 − 2xµ+ µ2

2σ2

)
=

1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
(13)

yielding the familiar expression for the probability density function.
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2 The posterior distribution

Consider the problem of determining the parameters of the distribution given an
observation x. From Bayes’ theorem, the posterior distribution is the product of
the likelihood distribution p(x | η) and the prior distribution p(η), normalized
by the probability p(x) of the data:

p(η | x) =
p(x | η)p(η)

p(x)
=

p(x | η)p(η)∫
η′
p(x | η′)p(η′)dη′

(14)

For certain distributions, the posterior can be determined analytically. The
conjugate prior gives a closed-form expression for the posterior. All exponential
family distributions have conjugate priors, which take the form

p(η | χ, ν) = f(χ, ν)g(η)ν exp(η · χ) (15)

where f(χ, ν) is a normalization constant and χ and ν are hyperparameters.
Hyperparameters describe how the parameters of a distribution are themselves
distributed. Hence the posterior distribution is

p(η | χ, ν,X) ∝ p(X | η)p(η | χ, ν)

= g(η)n

(
n∏
i=1

h(x)

)
exp

(
η ·

n∑
i=1

T (xi)

)
f(χ, ν)g(η)ν exp(η · χ)

= g(η)ν+n exp

(
η ·

(
χ+

n∑
i=1

T (xi)

))
f(χ, ν)

(
n∏
i=1

h(x)

)

∝ g(η)ν+n exp

(
η ·

(
χ+

n∑
i=1

T (xi)

))

= p

(
η | χ+

n∑
i=1

T (xi), ν + n

)
f

(
χ+

n∑
i=1

, ν + n

)−1

∝ p

(
η | χ+

n∑
i=1

T (xi), ν + n

)
(16)

This is the kernel of the prior distribution, hence

p(η | χ, ν,X) = p

(
η | χ+

n∑
i=1

T (xi), ν + n

)
= p (η | χ′, ν′)

(17)

where χ′ and ν′ are the posterior (updated) hyperparameters.
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2.1 Example: Poisson distribution

The conjugate prior of the Poisson distribution is the Gamma distribution, with
prior hyperparameters α and β:

Gamma(x | α, β) =
βα

Γ(α)
xα−1 exp(−βx) (18)

The interpretation of these is that there are α occurrences of an event in β
intervals. The posterior hyperparameters are

α′ = α+

n∑
i=1

xi (19)

β′ = β + n (20)

2.2 Example: Normal distribution

The conjugate prior of the normal distribution is the normal-gamma distribu-
tion, with prior hyperparameters µ0, ν, α, and β:

NG(x, τ | µ0, ν, α, β) =
βα
√
ν

Γ(α)
√

2π
τα−

1
2 exp

(
−τ 2β + ν(x− µ)2

2

)
(21)

The interpretation of these is that mean was estimated from ν observations
with sample mean µ0 and the variance was estimated from 2α observations with
a sum of squared deviations 2β. The posterior hyperparameters are

µ′0 =
νµ0 + nx̄

ν + n
(22)

ν′ = ν + n (23)

α′ = α+
n

2
(24)

β′ = β +
1

2

n∑
i=1

(xi − x̄)2 +
νn(x̄− µ0)2

2(ν + n)
(25)

where x̄ is the sample mean.

3 The predictive distribution

The probability density function of the model distribution can be expressed in
terms of the hyperparameters by marginalizing over the parameters:
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p(x | χ, ν) =

∫
η

p(x | η)p(η, χ, ν)dη

=

∫
η

g(η)h(x) exp(η · T (x))f(χ, ν)g(η)ν exp(η · χ)dη

= h(x)f(χ, ν)

∫
η

g(η)ν+1 exp(η · (χ+ T (x)))dη

= h(x)f(χ, ν)

∫
η

p(η | χ+ T (x), ν + 1)

f(χ+ T (x), ν + 1)
dη

=
h(x)f(χ, ν)

f(χ+ T (x), ν + 1)

∫
η

p(η | χ+ T (x), ν + 1)dη

=
h(x)f(χ, ν)

f(χ+ T (x), ν + 1)

(26)

This is the predictive distribution of observing a new data point x given the
data observed so far, with the parameters marginalized out.

3.1 Example: Poisson distribution

The predictive distribution of the Poisson distribution is given by

p(x | α, β) = NB

(
x | α′, 1

1 + β′

)
(27)

where primed variables indicate the posterior values of the hyperparameters
and NB(x | r, p) is the function of a negative binomial distribution with r failures
and a probability p of success in each trial:

NB(x | r, p) =

(
x+ r − 1

x

)
(1− p)rpx (28)

3.2 Example: Normal distribution

The predictive distribution of the normal distribution is given by

p(x | µ, η, α, β) = t2α′

(
x | µ′, β

′(ν′ + 1)

α′ν′

)
(29)

where tν(x | µ, σ) refers to Student’s t-distribution with n degrees of freedom,
centered at µ and scaled by σ:

tν(x | µ, σ) =
Γ(ν+1

2 )

σΓ(ν2 )
√
νπ

(
1 +

1

ν

(
x− µ
σ

)2
)− ν+1

2

(30)

Note that σ in this equation does not correspond to a standard deviation.
It simply sets the overall scaling of the distribution.
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