associativity

\(\land\) is associative: \[ A \land (B \land C) = (A \land B) \land C \]

\(\lor\) is associative: \[ A \lor (B \lor C) = (A \lor B) \lor C \]

commutativity

\(\land\) is commutative: \[ A \land B = B \land A \]

\(\lor\) is commutative: \[ A \lor B = B \lor A \]

idempotence

\(\land\) is idempotent: \[ A \land A = A \]

\(\lor\) is idempotent: \[ A \lor A = A \]

identity

\(\land\) has identity \(\top\): \[ A \land \top = A \]

\(\lor\) has identity \(\bot\): \[ A \lor \bot = A \]

annihilator

\(\land\) has annihilator \(\bot\): \[ A \land \bot = \bot \]

\(\lor\) has annihilator \(\top\): \[ A \lor \top = \top \]

distributivity

\(\land\) distributes over \(\lor\): \[ A \land (B \lor C) = (A \land B) \lor (A \land C) \]

\(\lor\) distributes over \(\land\): \[ A \lor (B \land C) = (A \lor B) \land (A \lor C) \]

\(\square\) distributes over \(\land\): \[ \square (A \land B) = \square A \land \square B \] \[ \square \top = \top \]

\(\lozenge\) distributes over \(\lor\): \[ \lozenge (A \lor B) = \lozenge A \lor \lozenge B \] \[ \lozenge \bot = \bot \]

absorption

\[ A \land (A \lor B) = A \]

\[ A \lor (A \land B) = A \]

complement

\[ A \land \neg A = \bot \]

\[ A \lor \neg A = \top \]

reflexivity

\[ \frac{}{A = A} \]

Leibniz's rule

\[ \frac{A = B}{C[x / A] = C[x / B]} \]