antisymmetric
\(a R b \land b R a \rightarrow a = b\)
automorphic
endomorphic and isomorphic
bijective
injective and surjective
binary relation
a binary relation between sets \(A\) and \(B\) is a subset of \(A \times B\)
connex
\(a R b \lor b R a\)
epimorphism
right-cancellative morphism
equivalence relation
symmetric preorder
function
binary relation that is univalent and left-total
idempotent
\(a^2 = a\)
involutive
\(a^2 = 1\)
injective
\(f(a) = f(b) \rightarrow a = b\)
left-total
\(\forall a \in A: \exists b \in B: a R b\)
monomorphism
left-cancellative morphism
monotone
\(a \leq b \rightarrow f(a) \leq f(b)\)
partial order
antisymmetric preorder
prefix order
downward-total partial order
preorder
binary relation that is reflexive and transitive
reflexive
\(a R a\)
strictly monotone
\(a < b \rightarrow f(a) < f(b)\)
surjective
\(\text{im}(f) = \text{cod}(f)\)
symmetric
\(a R b \rightarrow b R a\)
transitive
\(a R b \land b R c \rightarrow a R c\)
univalent
\(a R b \land a R c \rightarrow b = c\)