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1 Vectors and scalars

A vector is a geometric object that has magnitude and direction. Examples
of vectors include position, displacement, velocity, acceleration, force, linear
momentum, angular momentum.

A scalar is a quantity that only has magnitude but no direction. Examples
include temperature, mass, charge, volume, time, speed, and energy.

1.1 Axioms of a vector space

Vectors can be added together and multiplied by scalars. They satisfy the
following axioms:

u + (v + w) = (u + v) + w associativity of addition (1)

u + v = v + u commutativity of addition (2)

∃0∀ : v + 0 = v identity element of addition (3)

∃−v : v +−v = 0 inverse elements of addition (4)

a(bv) = (ab)v scalar and field multiplication (5)

1v = v identity element of scalar multiplication (6)

a(u + v) = au + av scalar multiplication and vector addition (7)

(a+ b)v = av + bv scalar multiplication and field addition (8)

1.2 The Levi Civita symbol

The Levi Civita symbol (also known as the permutation, antisymmetric, or
alternating symbol) represents a collection of numbers, defined from the sign of
a permutation of the natural numbers 1, 2, . . . , n for some natural number n.

εijk =


+1 if (i, j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2)

−1 if (i, j, k) is (3, 2, 1), (2, 1, 3), or (1, 3, 2)

0 if i = j or j = k or k = i

(9)
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i.e. εijk is 1 if (i, j, k) is an even permutation of (1, 2, 3), −1 if it is an odd
permutation, and 0 if any index is repeated.

The cross product can be defined in terms of the Levi-Civita symbol εijk
and an inner product ηmi (which is simply δmi for an orthonormal basis, where
δmi = 0 if m 6= i and δmi = 1 if m = i):

c = a× b⇐⇒
3∑
i=1

3∑
j=1

3∑
k=1

ηmiεijka
jbk (10)

Some useful identities in three dimensions are

εijkε
imn = δmj δ

n
k − δnj δmk (11)

εjmnε
imn = 2δij (12)

εijkε
ijk = 6 (13)

2 Coordinate systems

A coordinate system is a system which uses one or more numbers, or coordinates,
to uniquely determine the position of a point in Euclidean space. A typical
example of a coordinate system is the Cartesian coordinate system.

2.1 Cylindrical coordinates

Another common coordinate system is the cylindrical coordinate system, which
specifies points by their distance ρ from a chosen reference axis, their direction φ
from the axis relative to a chosen reference direction, and their (signed) distance
z from a chosen reference plane perpendicular to the axis.

The conversion from polar coordinates (ρ, φ, z) to Cartesian coordinates
(x, y, z) is

x = ρ cosφ (14)

y = ρ sinφ (15)

z = z (16)

The conversion from Cartesian coordinates to cylindrical coordinates is

ρ =
√
x2 + y2 (17)

φ = arctan 2(y, x) (18)

z = z (19)

where arctan 2(y, x) is the angle in radians between the positive x-axis of a
plane and the point given by the coordinates (x, y) on it. Cylindrical coordinates
are useful in problems that have rotational symmetry.
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2.2 Spherical coordinates

A spherical coordinate system is a coordinate system where the position of a
point is specified by the radial distance r of that point from a fixed origin, its
polar angle θ measured from a fixed zenith direction, and the azimuthal angle
φ of its projection onto a reference plane that passes through the origin and
is orthogonal to the zenith, measured from a fixed reference direction on that
plane.

The conversion from spherical coordinates (r, θ, φ) to Cartesian coordinates
(x, y, z) is given by

x = r sin θ cosφ (20)

y = r sin θ sinφ (21)

z = r cos θ (22)

The conversion from Cartesian coordinates to spherical coordinates is

r =
√
x2 + y2 + z2 (23)

θ = arccos
(z
r

)
(24)

φ = arctan 2(y, x) (25)

Spherical coordinates are useful in problems that have spherical symmetry.

2.3 Derivatives in polar coordinates

Using x = r cosφ and y = r sinφ

r
∂f

∂r
= r

∂x

∂r

∂f

∂x
+ r

∂y

∂r

∂f

∂y

= r cosφ
∂f

∂x
+ r sinφ

∂f

∂y

= x
∂f

∂x
+ y

∂f

∂y

(26)

∂f

∂φ
=
∂x

∂φ

∂f

∂x
+
∂y

∂φ

∂f

∂y

= −r sinφ
∂f

∂x
+ r cosφ

∂f

∂y

= −y ∂f
∂x

+ x
∂f

∂y

(27)

These two results are equivalent to
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r
∂

∂r
= x

∂

∂x
+ y

∂

∂y
(28)

∂

∂φ
= −y ∂

∂x
+ x

∂

∂y
(29)

The basis vectors of a polar coordinate system are er = (cosφ, sinφ) and
eφ = (− sinφ, cosφ). Therefore

der = d(cosφ, sinφ)

= (d cosφ, d sinφ)

= (− sinφdφ, cosφdφ)

= (− sinφ, cosφ)dφ

= eφdφ

(30)

In dot notation, this is equivalent to

ėr = eφφ̇ (31)

deφ = d(− sinφ, cosφ)

= (−d sinφ, d cosφ)

= (− cosφdφ,− sinφdφ)

= (− cosφ,− sinφ)dφ

= −(cosφ, sinφ)dφ

= −erdφ

(32)

In dot notation, this is equivalent to

ėφ = −erφ̇ (33)

Using the previous identities, we find that

r = rer (34)

dr = d(rer)

= (dr)er + r(der)

= (dr)er + r(dφ)eφ

(35)

In dot notation, this is equivalent to
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ṙ = ṙer + rφ̇eφ (36)

d2r = d(dr)

= d((dr)er + r(dφ)eφ)

= d((dr)er) + d(r(dφ)eφ)

= (d2r)er + (dr)(der) + (dr)(dφ)eφ + r(d2φ)eφ + r(dφ)(deφ)

= (d2r)er + (dr)eφ(dφ) + (dr)(dφ)eφ + r(d2φ)eφ − r2(dφ)er

= ((d2r)− r2(dφ))er + (r(d2φ) + 2(dr)(dφ))eφ

(37)

In dot notation, this is equivalent to

r̈ = (r̈ − rφ̇2)er + (rφ̈+ 2ṙφ̇)eφ (38)

3 Non-inertial reference frames

Suppose we have a particle at position xA in an inertial frame A. Consider a
non-inertial frame B whose origin with respect to the inertial one is xBA. Let
the position of the particle in frame B be xB.

Let the coordinate axes in B be represented by the unit vectors uj. Then

xB = xjuj (39)

where the Einstein summation convention is used. Then, the position of the
particle in frame A is

xA = xBA + xB

= xBA + xjuj

(40)

Taking the time derivative yields

vA =
dxA

dt

=
dxBA

dt
+

dxjuj

dt

=
dxBA

dt
+

dxj

dt
uj + xj

duj

dt

= vBA + vB + xj
duj

dt

(41)

Hence the velocity of the particle in frame A consists of what observers in
frame B see the velocity to be (vB) and two extra terms related to the rate
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of change of frame B’s coordinate axes (the first one being the velocity of the
moving origin and the second one due to the fact that different locations in
the non-inertial frame have different apparent velocities due to rotation of the
frame.

To find the acceleration, we take another derivative:

aA =
dvA

dt

=
dvBA

dt
+

dvB

dt
+

dxj

dt

duj

dt
+ xj

d2uj

dt2

= aBA +
dvB

dt
+ vj

duj

dt
+ xj

d2uj

dt2

(42)

The velocity derivative is

dvB

dt
=

dvjuj

dt

=
dvj

dt
uj + vj

duj

dt

= ajuj + vj
duj

dt

= aB + vj
duj

dt

(43)

Hence

aA = aBA + aB + 2vj
duj

dt
+ xj

d2uj

dt2
(44)

Hence the acceleration of the particle in frame A consists of acceleration in
frame B call the acceleration aB. In addition there are three acceleration terms
related to the movement of frame B’s coordinate axes: one term related to the
acceleration of the origin of frame B, namely aAB, and two terms related to
rotation of frame B.

Consequently, observers in B will see the particle motion as possessing ex-
tra acceleration and attribute it to ”forces” acting on the particle, but which
observers in A say are ”fictitious” forces arising simply because the frame B is
non-inertial.

In terms of forces, the accelerations are multiplied by the particle mass:

FA = FB +maBA + 2mvj
duj

dt
+mxj

d2uj

dt2
(45)

Hence the force observed in frame B is

FB = FA −maBA − 2mvj
duj

dt
−mxj d2uj

dt2

= FA + Ffictitious

(46)
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3.1 Rotating frame

Let Ω be the angular velocity vector of frame B, with magnitude

|Ω| = dθ

dt
= ω (47)

where ω(t) is the angular speed. Then the time derivative of a vector u in
frame B is

du

dt
= Ω× u (48)

and

d2u

dt2
=

dΩ

dt
× u + Ω× du

dt

=
dΩ

dt
× u + Ω× (Ω× u)

(49)

Recall that

aA = aBA + aB + 2vj
duj

dt
+ xj

d2uj

dt2
(50)

Letting aBA = 0 to remove translational acceleration,

aA = aB + 2vj
duj

dt
+ xj

d2uj

dt2

= aB + 2vjΩ× uj + xj
(

dΩ

dt
× u + Ω× (Ω× u)

)
= aB + 2vjΩ× uj + xj

dΩ

dt
× u + xjΩ× (Ω× u)

= aB + 2vjΩ× uj +
dΩ

dt
× xB + Ω× (Ω× xB)

(51)

The physical acceleration aA due to real external forces on the object ob-
served from frame A is not just the acceleration as seen from frame B but has
several additional terms associated with the rotation B. As seen in the rotational
frame, the acceleration is given by

aB = aA − 2Ω× vB −Ω× (Ω× xB)− dΩ

dt
× xB (52)

In terms of forces

maB = maA − 2mΩ× vB −mΩ× (Ω× xB)−mdΩ

dt
× xB (53)

Therefore
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FB = FA + Ffictitious (54)

where

Ffictitious = −2mΩ× vB −mΩ× (Ω× xB)−mdΩ

dt
× xB (55)

3.2 Local coordinate system on Earth

The vector formula for the Coriolis acceleration is

aC = −2Ω× v (56)

Multiplying both sides by mass yields the Coriolis force:

FC = −2mΩ× v (57)

Consider a location with latitude λ. A local coordinate system is set up
with the x axis pointing east, the y axis pointing north, and the z axis pointing
upward. The angular velocity vector of the Earth can be expressed in this local
coordinate system as

Ω = ω

 0
cosϕ
sinϕ

 (58)

The velocity is expressed in this local coordinate system as

v =

vevn
vu

 (59)

Hence the Coriolis acceleration is

aC = −2Ω× v = 2ω

vn sinφ− vu cosφ
−ve sinφ
ve cosφ

 (60)

3.3 Surface of water in rotating cylinder

Consider a rotating cylinder filled with liquid. It can be shown that the liquid
surface will form a parabola (more accurately, a paraboloid).

There are two forces acting on a mass m at the surface of the liquid at
coordinates x and y, where x is the horizontal distance from the axis of rotation
and y is the height from some reference elevation.

These two forces are the centripetal force Fcentripetal = mω2x, which acts
horizontally, and the gravitational force Fgravitational = mg, which acts vertically.
Therefore the components of the normal force acting on the mass are
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Fy = F cos θ = mg (61)

Fx = F sin θ = mω2x (62)

where θ is the angle that the tangent to the curve makes with the horizontal
axis (which is perpendicular to the angle that the normal to the curve makes
with the horizontal axis). Therefore

dy

dx
= tan θ =

sin θ

cos θ
=
F sin θ

F cos θ
=
mω2x

mg
=
ω2x

g
(63)

Integrating this with respect to x yields

y =

∫
dy

dx
dx =

∫
ω2x

g
dx =

ω2x2

2g
+ C (64)

where C is some constant.

4 Oscillators

4.1 Simple harmonic oscillators

A simple harmonic oscillator is an oscillator that is neither damped nor driven.
It consists of a mass m which experiences a single force F which pulls the
mass in the direction of the equilibrium point and depends only on the mass’s
displacement from equilibrium x and a constant k. The equations of motion for
the system are

F = ma = m
d2x

dt2
= mẍ = −kx (65)

Solving this differential equation yields

x = A cos(ωt+ φ) (66)

where

ω =

√
k

m
=

2π

T
(67)

ω is the angular frequency of the oscillator and T is the period of the oscilla-
tor. The potential energy stored in a simple harmonic oscillator at displacement
x is

U =
1

2
kx2 (68)
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4.2 Springs in parallel

For springs in parallel, whatever distance spring 1 is compressed has to be the
same amount spring 2 is compressed.

The force on the block attached to the springs is then

F = F1 + F2 = −k1x− k2x = −(k1 + k2)x (69)

where k1 and k2 are the spring constants of spring 1 and spring 2, respec-
tively. Hence the equivalent spring constant is

kequivalent = k1 + k2 (70)

This is the same as the formula for the effective conductance (reciprocal of
resistance) of two resistors G1 and G2 in parallel:

Gequivalent = G1 +G2 (71)

4.3 Springs in series

Consider two springs placed in series, with a mass attached to the end of the
second. ach of the springs will experience corresponding displacements x1 and
x2 for a total displacement of x1 + x2. We are looking for an effective or
equivalent spring constant such that

F = −kequivalent(x1 + x2) (72)

The force that each spring experiences is the same, otherwise the springs
would buckle. Therefore

F = −k1x1 = −k2x2 (73)

Therefore, solving for x1 in terms of x2,

x1 =
k2

k1
x2 (74)

Substituting this into our previous equation yields

F = −kequivalent

(
k2

k1
x2 + x2

)
= −kequivalent

(
k2 + k1

k1

)
x2 (75)

The force that each spring experiences is also the same as that experienced
by the block, so

F2 = −k2x2 = −kequivalent

(
k2 + k1

k1

)
x2 = F (76)

Canceling −x2 on both sides yields
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k2 = kequivalent

(
k2 + k1

k1

)
(77)

or

k2k1

k2 + k1
= kequivalent (78)

which can also be written as

1

k2
+

1

k1
=

1

kequivalent
(79)

This is the same as the formula for the effective conductance of two resistors
G1 and G2 in series:

1

Gequivalent
=

1

G1
+

1

G2
(80)

4.4 Damped harmonic oscillator

In a damped harmonic oscillator, friction, or damping, slows the motion of the
system. The velocity decreases due to a frictional force which can be modeled as
proportional to the velocity v of the object by a factor of a damping coefficient
c:

Ffrictional = −cv (81)

The equations of motion are then

F = mẍ = Fspring + Fdamping = −kx− cẋ (82)

If there are no external forces, Fexternal = 0 and the previous equation can
be rewritten in the form

ẍ+ 2βẋ+ ω2
0x = 0 (83)

or

ẍ+ 2ζω0ẋ+ ω2
0x = 0 (84)

where ω0 =
√

k
m is the undamped angular frequency of the oscillator and

ζ = c
2
√
mk

is the damping ratio. The damping ratio determines the overall

behavior of the system.
If ζ < 1, the system oscillates while the amplitude gradually decreases to

zero (as long as ζ > 0). The angular frequency of the underdamped harmonic
oscillator is given by

ω1 = ω0

√
1− ζ2 (85)
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The exponential decay of the amplitude of an underdamped harmonic oscil-
lator is given by

λ = ω0ζ (86)

meaning the decay time τ = 1/(ζω0).
If ζ = 1, the system is critically damped and returns to steady state as

quickly as possible without oscillating.
If ζ > 1, the system is overdamped and returns to steady state without

oscillating with exponentially decaying amplitude.
The total energy of a damped oscillator is the sum of its kinetic and potential

energies:

E =
1

2
mẋ2 +

1

2
mω2

0x
2 (87)

Differentiating the above equation yields

Ė = mẋẍ+mω2
0xẋ = mẋ(ẍ+ ω2

0x) (88)

But since

ẍ+ 2βẋ+ ω2
0x = 0 (89)

Then

Ė = −2mβẋ2 (90)

4.5 The quality factor

The energy loss rate of a weakly damped oscillator (β � ω0 or ζ � 1) can be
characterized in terms of a parameter Q called the quality factor. The quality
factor is defined by

Q = 2π × Energy stored

Energy lost per cycle
(91)

If the oscillator is weakly damped then the energy lost per period is relatively
small and Q is therefore much larger than unity. Roughly speaking Q is the
number of oscillations that the oscillator typically completes after being set in
motion before its amplitude decays to a negligible value.

The most general solution for a weakly damped oscillator can be written as

x = Ae−βt cos(ω1t− φ) (92)

Hence

ẋ = −A(βe−βt cos(ω1t− φ) + ω1e
−βt sin(ω1t− φ)) (93)

Therefore the energy lost during a single oscillation period is
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∆E = −
∫ T

0

Ėdt =

∫ T

0

2mβẋ2dt = 2mβ

∫ T

0

ẋ2dt (94)

Substituting the previous expression for ẋ yields

∆E = 2mβ

∫ T

0

A2e−2βt(βe−βt cos(ω1t− φ) + ω1e
−βt sin(ω1t− φ))2dt

= 2mβA2

∫ 2π
ω1

0

e−2βt(βe−βt cos(ω1t− φ) + ω1e
−βt sin(ω1t− φ))2dt

(95)

In the weakly damped limit, β � ω1 so the exponential factor is approxi-
mately unity in the interval, so that

∆E ≈ 2mβA2

∫ 2π
ω1

0

(βe−βt cos(ω1t− φ) + ω1e
−βt sin(ω1t− φ))2dt

=
2mβx2

0

ω1

∫ 2π

0

(β2 cos2 θ + 2βω1 cos θ sin θ + ω2
1 sin2 θ)dθ

=
2mβx2

0

ω1

(
β2

∫ 2π

0

cos2 θdθ + 2βω1

∫ 2π

0

cos θ sin θdθ + ω2
1 sin2 θdθ

) (96)

Both cos2 θ and sin2 θ have average values of 1
2 in the interval between 0 and

2π, whereas cos θ sin θ has an average value of zero. Hence

∆E ≈ 2mβA2

ω1
(β2π + ω2

1π) =
2πmβA2

ω1
(β2 + ω2

1) = 2πmω2
0A

2 β

ω1
(97)

The energy stored in the oscillator at t = 0 is

E =
1

2
mω2

0A
2 (98)

Therefore

Q = 2π
E

∆E
= 2π

1
2mω

2
0A

2

2πmω2
0A

2 β
ω1

=
ω1

2β
=

√
ω2

0 − β2

2β
(99)

But since β � ω0, this reduces to

Q ≈ ω0

2β
=

1

2ζ
(100)
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5 Phase space

Because the equation of motion is of second order, the state of motion of a
one-dimensional oscillator is completely specified as a function of time if two
quantities are given at one instant of time, that is, the initial conditions x(t0)
and ẋ(t0). We may consider the quantities x and ẋ to be the coordinates of
a point in a two-dimensional space, called phase space. As time evolves, the
point (x, ẋ) describing the state of the oscillating particle will move along a
certain phase path in phase space. The combination of all possible phase paths
constitutes the phase portrait or the phase diagram of the oscillator. We know
that

x = A sin(ω0t− φ) = A sin θ (101)

ẋ = Aω0 cos(ω0t− φ) = Aω0 cos θ (102)

Then

x2 +
ẋ2

ω2
0

= A2 (103)

Because the total energy E of the oscillator is 1
2kA

2 and because ω2
0 = k

m ,
this can be rewritten as

kx2

2E
+
mẋ2

2E
= 1 (104)

Each phase path then corresponds to a definite total energy of the oscillator.
Since

ẍ+ ω2
0x = 0 (105)

We can replace this with a pair of equations

dx

dt
= ẋ (106)

dẋ

dt
= −ω2

0x (107)

Dividing the second equation by the first yields

dẋ

dx
= −ω2

0

x

ẋ
(108)

The solution of which is an ellipse in phase space.
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5.1 Addendum: Complete derivation for rotating frames

Primed variables correspond to the inertial, non-rotating reference frame, while
unprimed variables correspond to the non-inertial, rotating reference frame.

r′ = R+ r

dr′ = dR+ dr

= dR+ d(riei)

= dR+ (dri)ei + ri(dei)

= dR+ viei + ridei

= dR+ v + ridei

dei = ω × ei

dr′ = dR+ v + ri(ω × ei)

= dR+ v + ω × riei

= dR+ v + ω × r
d2r′ = d2R+ dv + d(ω × r)

= d2R+ dv + (dω)× r + ω × (dr)

= d2R+ dv + (dω)× r + ω × (v + ω × r)
= d2R+ dv + (dω)× r + ω × v + ω × (ω × r)
= d2R+ d(viei) + (dω)× r + ω × v + ω × (ω × r)
= d2R+ (dvi)ei + vi(dei) + (dω)× r + ω × v + ω × (ω × r)
= d2R+ aiei + vi(dei) + (dω)× r + ω × v + ω × (ω × r)
= d2R+ a+ vi(dei) + (dω)× r + ω × v + ω × (ω × r)
= d2R+ a+ vi(ω × ei) + (dω)× r + ω × v + ω × (ω × r)
= d2R+ a+ ω × viei + (dω)× r + ω × v + ω × (ω × r)
= d2R+ a+ ω × v + (dω)× r + ω × v + ω × (ω × r)
= d2R+ a+ 2ω × v + (dω)× r + ω × (ω × r)

mr̈′ = mR̈+ma+ 2mω × v +mω̇ × r +mω × (ω × r)
F ′ = mR̈+ F + 2mω × v +mω̇ × r +mω × (ω × r)
F = F ′ −mR̈− 2mω × v −mω̇ × r −mω × (ω × r)

The first fictitious force is the Coriolis force, the second fictitious force is the
Euler force, and the third fictitious force is the centrifugal force.
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