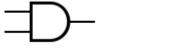
Quantum machine learning

Carlos Martin Egleston Scholar Class of 2018 5 December 2014

Overview

- Research question
 - Background and problem of interest
 - Current challenges in addressing the problem
 - Hypothesis and rationale for formulating hypothesis
 - Specific aims
- Background
- Professor Alfred Aho
 - Current research
 - Interested projects and contributions


What is a bit?

- Unit of classical information
- Can be either 0 or 1

Н 01001000 W 01010111 Ε 01000101 01001111 0 L 01001100 R 01010010 01001100 L 01001100 L 0 01001111 D 01000100

What is a gate?

Operation on bits

AND $0 \ 0 = 0$ **OR** $0 \ 0 = 0$

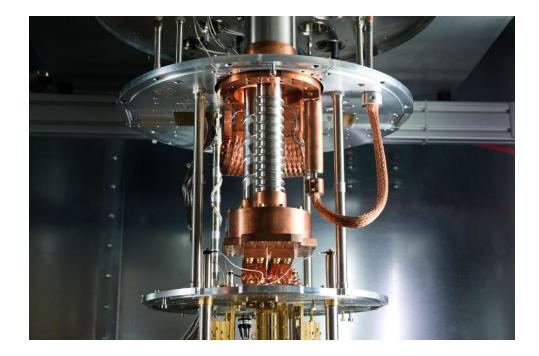
- **AND** 0 1 = 0 **OR** 0 1 = 1
- **AND** 1 0 = 0 **OR** 1 0 = 1

```
AND 1 1 = 1 OR 1 1 = 1
```

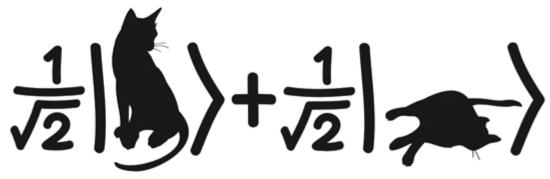
$$\exists D$$

XOR 0 0 = 0

XOR 0 1 = 1


XOR 1 1 = 0

- **NOT** 0 = 1
- **NOT** 1 = 0


What is a quantum computer?

- Quantum states and gates
- Superposition and entanglement

What is a qubit?

- Unit of quantum information
- Can be in a superposition of 0 and 1

- |0> and |1> are called basis states
- Can be implemented by a **two-state quantum system**, e.g. charge, spin state, current direction, energy state

State is **linear combination** of $|0\rangle$ and $|1\rangle$

 $|x\rangle = a|0\rangle + b|1\rangle$

where a and b are probability amplitudes

Probability of measuring 0 is $|a|^2$ Probability of measuring 1 is $|b|^2$ **Probabilities sum to unity:** $|a|^2 + |b|^2 = 1$

Combined state is tensor product of states

 $|xy\rangle = |x\rangle \otimes |y\rangle$

and thus linear combination of combined basis states

$$|xy\rangle = a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle$$

where $|a|^2 + |b|^2 + |c|^2 + |d|^2 = 1$

Let $|x\rangle = a|0\rangle + b|1\rangle$ Let $|y\rangle = c|0\rangle + d|1\rangle$

The combined state is

 $|xy\rangle = |x\rangle \otimes |y\rangle$

- $= (a|0\rangle + b|1\rangle) \otimes (c|0\rangle + d|1\rangle)$
- $= a|0\rangle \otimes c|0\rangle + a|0\rangle \otimes d|1\rangle + b|1\rangle \otimes c|0\rangle + b|1\rangle \otimes d|1\rangle$
- $= \operatorname{ac}|0\rangle \otimes |0\rangle + \operatorname{ad}|0\rangle \otimes |1\rangle + \operatorname{bc}|1\rangle \otimes |0\rangle + \operatorname{bd}|1\rangle \otimes |1\rangle$
- $= ac|00\rangle + ad|01\rangle + bc|10\rangle + bd|11\rangle$

What is a quantum gate?

- Linear operation on qubits
- Unitary operation, preserves inner product


 $\langle Ux|Uy \rangle = \langle x|y \rangle$ $U^{\dagger}U = UU^{\dagger} = I$

where U[†] is conjugate transpose of U

• Hence U is **reversible** $(U^{-1} = U^{\dagger})$

What is a **quantum circuit**?

- Computation as a sequence of quantum gates
- Operate on a quantum register (collection of qubits)

NOT $|0\rangle = |1\rangle$ **CNOT** $|00\rangle = |00\rangle$

NOT $|1\rangle = |0\rangle$ **CNOT** $|01\rangle = |01\rangle$

CNOT $|10\rangle = |11\rangle$ **CNOT** $|11\rangle = |10\rangle$ **SWAP** $|00\rangle = |00\rangle$ **SWAP** $|01\rangle = |01\rangle$ **SWAP** $|10\rangle = |10\rangle$ **SWAP** $|11\rangle = |11\rangle$

What is the Hadamard gate?

• Creates an equal superposition of basis states

$$\mathbf{H}|1\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$

$$(\mathbf{H}|0\rangle)^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n - 1} |k\rangle$$

where $|k\rangle$ is the binary state representation of k

What is a phase-shift gate?

• Changes phases, not probabilities, of basis states

 $\begin{array}{l} \textbf{R}_{\pmb{\theta}} \left| 0 \right\rangle = \left| 0 \right\rangle \\ \textbf{R}_{\pmb{\theta}} \left| 1 \right\rangle = e^{i\theta} \left| 1 \right\rangle \end{array}$

The Hadamard and phase-shift gates can be combined to generate any pure qubit state, up to a global phase

 $\mathbf{R}_{\pi/2+\varphi} \mathbf{H} \mathbf{R}_{2\theta} \mathbf{H} |0\rangle = \cos \theta |0\rangle + e^{i\varphi} \sin \theta |1\rangle$

Quantum Fourier transform: computes discrete Fourier transform in $O(n^2)$ gates, classical version requires $O(n2^n)$

Maps $(x_0, x_1, ..., x_{n-1})$ to $(y_0, y_1, ..., y_{n-1})$

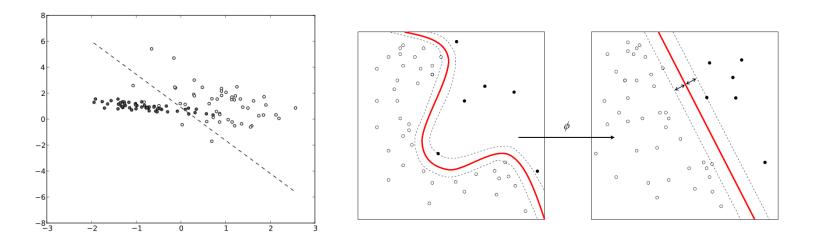
$$y_j = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} e^{\frac{2\pi i}{n} jk} x_k$$

$$|j\rangle \rightarrow \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} e^{\frac{2\pi i}{n}jk} |k\rangle$$

Grover's algorithm: searches unsorted database with n entries in $O(n^{1/2})$ time, linear search requires O(n)

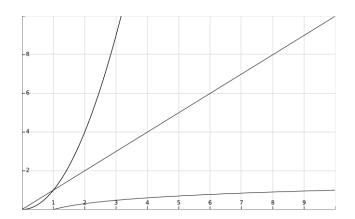
Shor's algorithm: finds prime factors of n in O((log n)³) time, GNFS requires O(exp(c(log n)^{1/3}(log log n)^{2/3}))

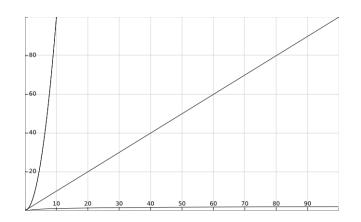
Breaks public key cryptography schemes, such as RSA **Search for quantum and post-quantum cryptography**


Research question and hypothesis

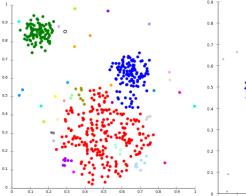
- How can quantum computing be used to improve the efficiency of machine learning techniques?
 - Efficient calculation of distances between data points (for use in SVMs and k-nearest neighbor methods)
 - Quantum models or formulations of ANNs, Bayesian networks, and hidden Markov models for problem-solving
 - Formulating decision strategies in terms of quantum physics
 - Implementing optimization problems (usually solved by iterative gradient descent) on a quantum computer
- How can the efficiency of support vector machines be improved through quantum computing?

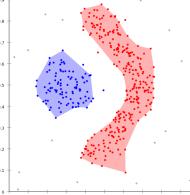
Specific aims

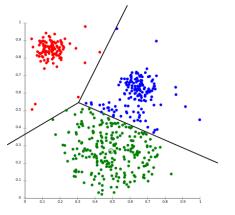

Quantum computing for support vector machines:

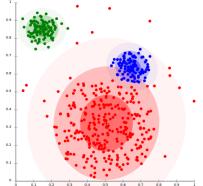

- Used for linear discrimination, pattern classification
- Finding hyperplane that best discriminates between two class regions containing data points
- Non-linear problems can be mapped to linear ones in a higher dimensional space (kernel method)

Specific aims

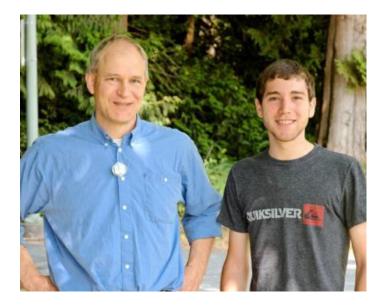

- Manipulating and classifying large number of vectors in high-dimensional spaces (feature spaces)
- Quantum computers excel at manipulating vectors in large, high-dimensional tensor product spaces
- Performance in number of vectors and dimensions:
 - Classical algorithms: polynomial
 - Quantum algorithms: **logarithmic**






Specific aims

- Support vector machines rely on a kernel containing the inner product of feature vectors as entries
- Calculating kernels is computationally expensive
- Inner product evaluation could be done faster on a quantum computer using quantum states
- Optimization of inner product evaluation for SVMs and distance measures for cluster analysis



- Education
 - Mulgrave School Class of 2014: IB Higher Level Physics, Chemistry, and Mathematics
 - Columbia University Class of 2018, Fu Foundation School of Engineering and Applied Science
 - Applied Physics and Computer Engineering

- Honors
 - TRIUMF High School Fellowship recipient
 - Michael Smith National Science Challenge Top 3%
 - Certificate of Distinction in Pascal, Cayley, Fermat, Euclid, Canadian Senior Mathematics Contests
 - Canadian Open Mathematics Challenge Distinction
 - British Columbia Passport to Education Award
 - Gold medal in Venezuelan Mathematical Olympiad

- Work or Research Experiences
 - High school fellowship at TRIUMF, Canada's national laboratory for particle and nuclear physics
 - Development and operation of laser ion sources
 - Delivery of radioactive ion beams for use in experiments
 - Use of resonance ionization laser ion source (RILIS) to separate isobaric radioactive ion beams
 - Resonant transitions driven by a pulsed Ti-Sapphire laser pumped by frequency-doubled Nd:YAG lasers
 - ABCD ray transfer matrix analysis of laser system
 - Surface ionization properties (Saha-Langmuir equation)


- Work or Research Experiences
 - Appazur solutions cross-platform mobile development
 - Orthogonal transformations in Rⁿ, rotations through Euler angles, matrices, axis-angles, quaternions
 - Numerical methods for solving differential equations: Euler, symplectic Verlet, Midpoint, Runge-Kutta

- Other independent research
 - Physics engine development for classical mechanics simulations, collision detection and resolution
 - Computational fluid dynamics using Eulerian (grid-based) and Lagrangian (particle-based) methods like Smoothed Particle Hydrodynamics (SPH)
 - Computational electromagnetics simulation based on finitedifference time-domain (FDTD) method
 - Machine learning through support vector machines (SVMs) and artificial neural networks (ANNs)
 - Programming language lexing, parsing, compiling

- Research interests
 - Quantum computing and information science
 - Neuromorphic computing systems
 - Artificial intelligence and machine learning
- Future career goals
 - Graduate research in quantum computing
 - Application of research to optimization problems in physics, mathematics, and computer science
 - Application of research to cryptographic schemes

Professor Alfred Aho

- Research projects:
 - Columbia Language and Compilers Research Group
 - Software architectures for quantum computing design tools
 - Compiling quantum circuits (using Palindrome Transform)
 - Threshold estimates for faulttolerant quantum computing

Interest

- Research projects of interest
 - General purpose quantum compiler: decomposition of unitary operations into elementary operations (e.g. single qubit rotations, CNOT gates) through CS Decomposition (example: Qubiter)
 - Implementation of imperative and functional languages
 - Efficient methods for incorporating fault tolerance and quantum error correction into programs (decoherence, quantum noise)
 - Efficient algorithms for optimizing and verifying programs
 - Synthesis and simulation of quantum circuits
 - Topological quantum computing (robust against noise)
 - Adiabatic quantum computing (Hamiltonian slowly evolved to one whose ground state encodes the solution)

Interest

- Potential contributions based on prior research experience or interests
 - Experience programming in C/C++, Java, Python, etc.
 - Experience simulating physical phenomena using computational methods (e.g. numerical integration, finite difference time-domain method, smoothed particle hydrodynamics)
 - Experience programming algorithms for machine learning, data mining, pattern recognition, classification
- Time commitment: 10 hours per week + summer months